Tech News Today, Marshmallow Custom Rom, Huawei, Run Programs, Network, Chromebook, Bank Account

Selasa, 17 Juni 2014

Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing

Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing - To all visitors of this blog, I say welcome and thank you for visiting the blog Tech News Today Look for all the things you need that are available on this blog. If not available, please leave suggestions and comments for the development of this blog. now we will discuss first about Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing we have collected a lot of information from sources to create this article, so please see.

Articles : Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing
full Link : Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing

You can also see our article on:


Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing

 
Download Full paper at IJRITCC
 
Edge detection in an image is an major issue in image processing.Many hidden objects can be identified using edge detection which gives major clue in identifying actual truth behind the images. In this paper, double thresholding method of edge detection along with canny edge detector is used to identify the small objects in an images.Here threshold plays a major role which extracts the clear image from unclear picture 
 
CANNY EDGE DETECTION USING FUSSY LOGIC
 
 
Conclusion : 
 
Because of the uncertainties that exist in many aspects of image processing  , and as image are always dynamic , fuzzy processing is desirable . These uncertainties include additive and non- additive noise in low level image processing , imprecision in the assumptions underlying the algorithms , and  ambiguities in interpretation during high level image processing . For the common process of edge detection usually models edges as intensity ridges . Finally by increasing the threshold value greater than 50 and contrast can be improved . 
 
And here is the full program in matlab  for the same 
 
**************************************************
 
%%Start of coding, Symbols have their usual meaning 

%% Input Image 
clear all;
clc;
A=[];
piA=[];
%Using 16 fuzzy edge templets that show the possible direction of the edge
%s in the image and then calculating the divergence between the origin
%image and the 16 fuzzy templets.

%Take any one example and uncomment it ;
%Reading the pixel of the image using imread function of the matlab
% %for rice image
%  III = rgb2gray(imread('rice.tif'));%name of the image
% II = imcrop(III,[80 30 240 200]);

 %III = rgb2gray(imread('self_fig.tif'));%name of the image
%II = imcrop(III,[50 40 650 400]);
 III = rgb2gray(imread('canny1.tif'));%name of the image
 II = imcrop(III,[5 5 560 450]);
%%For Tree image;
 %III = rgb2gray(imread('1.2.03.tiff'));%name of the image
% %II = imcrop(III,[35 94 430 355]);

  %III = imread('1.4.09.tiff');%name of the image
% %For lena photo
% III = rgb2gray(imread('lena.tiff'));%name of the image
%  II = imcrop(III,[35 94 430 355]);

I = double(II);
[r,k] = size(I);%no of row and column is I

%% Selection of the 16 fuzzy templets
a=0.3; b=0.8;
t1 = [a a a; 0 0 0; b b b];
t2 = [a a b; a b 0; b 0 0];
t3 = [b b b; 0 0 0; a a a];
t4 = [b a a; 0 b a; 0 0 b];
t5 = [b a 0;b a 0; b a 0];
t6 = [a 0 b;a 0 b; a 0 b];
t7 = [0 0 0; b b b; a a a];
t8 = [0 b a; 0 b a; 0 b a];
t9 = [a a a; b b b;0 0 0]; 
t10 = [a b 0; a b 0;a b 0];
t11 = [0 0 0; a a a;b b b];
t12 = [0 a b; 0 a b; 0 a b];
t13 = [b b b; a a a; 0 0 0];
t14 = [b 0 a; b 0 a; b 0 a];
t15 = [b 0 0; b 0 a; a a b];
t16 = [0 0 b; 0 b a; b a a];

%% Initization of algo
xmax = max(max(max(I)));%maximum pixel/element of the image;
%converting into the fuzzy domain from the original image;
fim = I/xmax;%fim is the image data of the input image in the fuzzy domain,all value of the fim in the interval of [0 1];
%initializing the edge image as zeros matrix i.e black box;
fedgeim = zeros(r,k);%in fuzzy domain
%Increaing the boreder line of the iamge i.e to increase the row and column
%by 2 in the first and last by taking the mirror image of the immediate
%existing rows and columns respectively;
r1 = fim(2,:);%Copy of all element in the 2nd row of fim
r2 = fim(r-1,:);
c1 = fim(:,2);
c2 = fim(:,k-1);
b1 = [0 r1 0];
b2 = [0 r2 0];
b3 = [c1 fim c2];
bfim = [b1;b3;b2];%bfim = Border fuzzy image matix
bfim(1,1) = fim(1,1);
bfim(r+2, k+2) = fim(r,k);
bfim(1,k+2) = fim(1,k);
bfim(r+2,1) = fim(r,1);


%finding Hesitation degree or intuitionstic fuzzy index
%c = input("Enter the value of pi  ");
c= 0.2;
pibfim = c*(1-bfim);
pit1 = c*(1-t1);pit2 = c*(1-t2);pit3 = c*(1-t3);pit4 = c*(1-t4);pit5 = c*(1-t5);pit6 = c*(1-t6);pit7 = c*(1-t7);
pit8 = c*(1-t8);pit9 = c*(1-t9);pit10 = c*(1-t10);pit11 = c*(1-t11);pit12 = c*(1-t12);pit13 = c*(1-t13);
pit14 = c*(1-t14);pit15 = c*(1-t15);pit16 = c*(1-t16);

%Calculation of the maximum of the divergance value between the 16 templets
%and the original image of the same size let the original image denoted by
%A this A arew formed by taking the 3x3 matrix in the border matix i.e from
%bfim
%Considering the fuzzy templats as mask of size 3x3 and then we will slide
%this matix  in the fuzzy matrix i.e in the fim not inj the bfim
for i = 2:r+1
    for j = 2:k+1
        A = [bfim(i-1,j-1) bfim(i,j-1) bfim(i+1,j-1) ; bfim(i-1,j) bfim(i,j) bfim(i+1,j) ; bfim(i-1,j+1) bfim(i,j+1) bfim(i+1,j+1)];
        piA = [pibfim(i-1,j-1) pibfim(i,j-1) pibfim(i+1,j-1) ; pibfim(i-1,j) pibfim(i,j) pibfim(i+1,j) ; pibfim(i-1,j+1) pibfim(i,j+1) pibfim(i+1,j+1)];
        
        %3x3 matrix for determining the divergence with the tempelets t1,
        %t2...15,16.
        %we calculate the divergence of 3x3 matrix at a time and then
        %taking the minimun element of the matrix for all 16 fuzzy
        %tempelets;
        %d1 is a matrix of 3x3 = divergence with original matix and
        %fuzzy templets 1
        d1 = 2 - (1-A+t1).*exp(A-t1)-(1-t1+A).*exp(t1-A)+ 2- (1-(A-t1)+pit1-piA).*exp(A-t1-(pit1-piA))-(1-(pit1-piA)+A-t1).*exp(pit1-piA-(A-t1));
        min1 =min(min(d1));
        %d2 is the matix of 3x3 = divergence matix with orinigal matrix and fuzzy tempelts 2. 
        d2 = 2 - (1-A+t2).*exp(A-t2)-(1-t2+A).*exp(t2-A)+2-(1-(A-t2)+pit2-piA).*exp(A-t2-(pit2-piA))-(1-(pit2-piA)+A-t2).*exp(pit2-piA-(A-t2));
        min2 =min(min(d2));
        d3 = 2 - (1-A+t3).*exp(A-t3)-(1-t3+A).*exp(t3-A)+2-(1-(A-t3)+pit3-piA).*exp(A-t3-(pit3-piA))-(1-(pit3-piA)+A-t3).*exp(pit3-piA-(A-t3));
        min3 =min(min(d3));
        d4 = 2 - (1-A+t4).*exp(A-t4)-(1-t4+A).*exp(t4-A)+2-(1-(A-t4)+pit4-piA).*exp(A-t4-(pit4-piA))-(1-(pit4-piA)+A-t4).*exp(pit4-piA-(A-t4));
        min4 =min(min(d4));
        d5 = 2 - (1-A+t5).*exp(A-t5)-(1-t5+A).*exp(t5-A)+2-(1-(A-t5)+pit5-piA).*exp(A-t5-(pit5-piA))-(1-(pit5-piA)+A-t5).*exp(pit5-piA-(A-t5));
        min5 =min(min(d5));
        d6 = 2 - (1-A+t6).*exp(A-t6)-(1-t6+A).*exp(t6-A)+2-(1-(A-t6)+pit6-piA).*exp(A-t6-(pit6-piA))-(1-(pit6-piA)+A-t6).*exp(pit6-piA-(A-t6));
        min6 =min(min(d6));
        d7 = 2 - (1-A+t7).*exp(A-t7)-(1-t7+A).*exp(t7-A)+2-(1-(A-t7)+pit7-piA).*exp(A-t7-(pit7-piA))-(1-(pit7-piA)+A-t7).*exp(pit7-piA-(A-t7));
        min7 =min(min(d7));
        d8 = 2 - (1-A+t8).*exp(A-t8)-(1-t8+A).*exp(t8-A)+2-(1-(A-t8)+pit8-piA).*exp(A-t8-(pit8-piA))-(1-(pit8-piA)+A-t8).*exp(pit8-piA-(A-t8));
        min8 =min(min(d8));
        d9 = 2 - (1-A+t9).*exp(A-t9)-(1-t9+A).*exp(t9-A)+2-(1-(A-t9)+pit9-piA).*exp(A-t9-(pit9-piA))-(1-(pit9-piA)+A-t9).*exp(pit9-piA-(A-t9));
        min9 =min(min(d9));
        d10 = 2 - (1-A+t10).*exp(A-t10)-(1-t10+A).*exp(t10-A)+2-(1-(A-t10)+pit10-piA).*exp(A-t10-(pit10-piA))-(1-(pit10-piA)+A-t10).*exp(pit10-piA-(A-t10));
        min10 =min(min(d10));
        d11 = 2 - (1-A+t11).*exp(A-t11)-(1-t11+A).*exp(t11-A)+2-(1-(A-t11)+pit11-piA).*exp(A-t11-(pit11-piA))-(1-(pit11-piA)+A-t11).*exp(pit11-piA-(A-t11));
        min11 =min(min(d11));
        d12 = 2 - (1-A+t12).*exp(A-t12)-(1-t12+A).*exp(t12-A)+2-(1-(A-t12)+pit12-piA).*exp(A-t12-(pit12-piA))-(1-(pit12-piA)+A-t12).*exp(pit12-piA-(A-t12));
        min12 =min(min(d12));
        d13 = 2 - (1-A+t13).*exp(A-t13)-(1-t13+A).*exp(t13-A)+2-(1-(A-t13)+pit13-piA).*exp(A-t13-(pit13-piA))-(1-(pit13-piA)+A-t13).*exp(pit13-piA-(A-t13));
        min13 =min(min(d13));
        d14 = 2 - (1-A+t14).*exp(A-t14)-(1-t14+A).*exp(t14-A)+2-(1-(A-t14)+pit14-piA).*exp(A-t14-(pit14-piA))-(1-(pit14-piA)+A-t14).*exp(pit14-piA-(A-t14));
        min14 =min(min(d14));
        d15 = 2 - (1-A+t15).*exp(A-t15)-(1-t15+A).*exp(t15-A)+2-(1-(A-t15)+pit15-piA).*exp(A-t15-(pit15-piA))-(1-(pit15-piA)+A-t15).*exp(pit15-piA-(A-t15));
        min15 =min(min(d15));
        %d16 is the matix of 3x3 = divergence matix with orinigal matrix and
        %fuzzy tempelts 16.
        d16 = 2 - (1-A+t16).*exp(A-t16)-(1-t16+A).*exp(t16-A)+2-(1-(A-t16)+pit16-piA).*exp(A-t16-(pit16-piA))-(1-(pit16-piA)+A-t16).*exp(pit16-piA-(A-t16));
        min16 =min(min(d16));
        %Selecting the minimun divergence among the 16 divergence values
        %and is positioned at the center of the templets position for the
        %edge iamge i.e in edgeim.
        dd = [min1 min2 min3 min4 min5 min6 min7 min8 min9 min10 min11 min12 min13 min14 min15 min16];
        fedgeim(i-1,j-1) = max(dd);
    end
end
%We wil get the edge image in the fuzzy doamin as edgeim matrix So we have
%to tranforming back in the image pixel domain i.e in the intercal [1
% 255] domain 
fedgeimmax = max(max(fedgeim));
edgeim = double((1/fedgeimmax)*(fedgeim));
% edgeimage = uint8(edgeim); %this is the matrix of edge in the 1-255
% figure, imshow(edgeimage);
% figure, imshow(uint8(I));
 
%% Out put
tt = 255*edgeim;
ttt = uint8(tt);
subplot(2,2,1),imshow(uint8(I))
title('original image');
%figure, imshow(ttt);
subplot(2,2,2),imshow(ttt)
title('Edge without threshold');
%Set a threshold 
for i = 1:r
    for j = 1:k
        if ttt(i,j)>45 
            ed(i,j) = 255;
        else
            ed(i,j) = 0;
        end
    end
end
subplot(2,2,3),imshow(ed);
title('After applying threshold 45');
%applying the morphological oprators of matlab i.e bwmorph
med = bwmorph(ed,'thin');
subplot(2,2,4), imshow(med);
title('after applying morphological thin fun');
 
*************************************************************



information Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing has been completed in the discussion.

hopefully the article we give the title Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing can provide knowledge for you in living everyday life in determining the gadget that suits your needs.

you just read the article about Edge Detection Technique by Fuzzy Logic CLA and Canny Edge Detector u sing Fuzzy Image Processing if this article is useful for you and want to bookmark it or share it please use the link https://sihanandi.blogspot.com/2014/06/edge-detection-technique-by-fuzzy-logic.html thank you and do not forget to comment if anyone.

Tag :
Share on Facebook
Share on Twitter
Share on Google+
Tags :

0 komentar:

Posting Komentar